DocMemory
 
Home
News
Products
Shop
Memory
Corporate
Contact
 

News
Industry News
Publications
CST News
Help/Support
Member Area
Tester Brochure
Demo Library
Software
Tester FAQs

biology medicine news product technology definition

Friday, February 23, 2018
Memory Industry News
Email ArticlePrinter Format PreviousNext

IBM offers quantum computing for cloud service


Tuesday, November 14, 2017

IBM has been offering quantum computing as a cloud service since last year when it came out with a 5 qubit version of the advanced computers. Today, the company announced that itís releasing 20-qubit quantum computers, quite a leap in just 18 months. A qubit is a single unit of quantum information.

The company also announced that IBM researchers had successfully built a 50 qubit prototype, which is the next milestone for quantum computing, but itís unclear when we will see this commercially available.

While the earliest versions of IBMís quantum computers were offered for free to build a community of users, and help educate people on programming and using these machines, todayís announcement is the first commercial offering. It will be available by the end of the year.

Quantum computing is a difficult area of technology to understand. Instead of being built on machines interpreting zeroes and ones in on/off states, quantum computers can live in multiple states. This creates all kinds of new programming possibilities and requires new software and systems to build programs that can work with this way of computing.

Dario Gil, IBM Research VP of AI and IBM Q, says the increased number qubits is only part of the story. The more Qubits you deal with, the more complex the qubit interactions become because they interact with one another in a process called entanglement. If you have more qubits, but there is a high error rate as they interact, then they might not be any more powerful than 5 qubit machine with a lower error rate. He says that IBM researchers have managed to achieve the higher qubit number with low error rates, making them highly useful to researchers. ďWe have more qubits and less errors, which is combined to solve more problems,Ē Gil said.

The other issue that comes into play when dealing with quantum states is that they tend to exist for a short period of time in a process known as coherence. It basically means that you only have a brief window of time before the qubits revert to a classical computing state of zeroes and ones. To give you a sense of how this coherence has been progressing, it was just a few nanoseconds when researchers started looking at this in the late 90s. Even as recently as last year, they were able to achieve coherence times of 47 and 50 microseconds for the 5 qubit machines. Todayís quantum machines are in the 90 microsecond range. While that doesnít sound like much, itís actually a huge leap forward.

All of these variables make it difficult for a programmer to build a quantum algorithm that can achieve something useful without errors and before it reverts to a classical state, but that doesnít take away from just how far researchers have come in recent years, and how big todayís announcement is in the quantum computing world.

The ultimate goal of quantum computing is a fault tolerant universal system that automatically fixes errors and has unlimited coherence. ďThe holy grail is fault-tolerant universal quantum computing. Today, we are creating approximate universal, meaning it can perform arbitrary operations and programs, but itís approximating so that I have to live with errors and a [limited] window of time to perform the operations,Ē Gil explained.

He sees this is an incremental process and todayís announcement is a step along the path, but he believes that even what they can do today is quite powerful. With todayís release and the improvements that IBM made to the QISKit, a software development kit (SDK) to help companies understand how to program quantum computers, they can continue to advance the technology. Itís not going to happen overnight, but companies, governments, universities and interested parties are undertaking research to see how this can work in practical application. (And of course, IBM isnít the only company working on this problem.)

IBM sees applications for quantum computing in areas like medicine, drug discovery and materials science as this technology advances and becomes better understood. It is also trying to anticipate possible negative consequences of an advanced technology such as†the ability to eventually be able to break encryption. Gil says they are working with standards bodies to try and† develop post-quantum computing encryption algorithms, and while they are a long way from achieving that, they certainly seem to understand the magnitude of the issues and are trying to mitigate them.

By: DocMemory
Copyright © 2017 CST, Inc. All Rights Reserved

Email ArticlePrinter Format PreviousNext
Latest Industry News
Micron announce plans for quadruple-level cell (QLC) flash memory2/22/2018
Intel plans to invest $5 billion in expanding production in Israel2/22/2018
Apple moves to deal direct with colbalt miners2/22/2018
Apple regains lead on both smartphone revenue and units sold2/22/2018
Samsung offers 30TB SSD2/21/2018
NXP to launch GreenBox development platform. for EV and plugged in cars2/21/2018
Qualcomm raise offer for NXP as a defence against Broadcom2/21/2018
What is Broadcom to get off the proposed Qualcomm merger?2/21/2018
Amazon use discounts, cash back benefits, and speedy delivery times to boost Wholefood sales2/20/2018
NAND flash memory chip prices expected to stabilize 2/20/2018

CST Inc. Memory Tester DDR Tester
Copyright © 1994 - 2018 CST, Inc. All Rights Reserved