Home
News
Products
Corporate
Contact
 
Wednesday, November 27, 2024

News
Industry News
Publications
CST News
Help/Support
Software
Tester FAQs
Industry News

Software-defined test adds flexibility to 5G systems


Tuesday, May 8, 2018

Software-defined radios, instrumentation and test are ramping up alongside a flood of new technologies related to assisted and autonomous vehicles, 5G, and military/aerospace electronics, breathing new life and significant change into the test and measurement market.

Software-defined test adds flexibility in markets where the products and protocols are evolving or still being defined, and where system architectures are being tweaked or replaced to deal with an explosion of data. In effect, the entire compute infrastructure across multiple markets is shifting, and the number of signals that need to be optimized and processed is rising significantly. Alongside of that is software-based instrumentation, also known as virtual instrumentation, which builds in similar levels of flexibility rather than relying on benchtop, handheld, and standalone instruments that have been a mainstay of the test and measurement business for decades.

“If you look at the smartphone you have sitting in front of you, that thing has multiple radios, testing multiple technologies, and the cost of that test, in theory, should be higher than it was 10 years ago because I’m actually testing probably 10 times more things than I was back then,” said Jason White, director of wireless test for National Instruments. “I’ve got more antennas, more radios. Besides cellular, I’m now testing Wi-Fi, GPS, NFC, wireless charging. All these things represent air interfaces on the product. The trends that you’re seeing in that space from a test equipment perspective affect the semiconductor value chain that goes into those devices, and they also affect the end devices’ manufacturing test.”

Software-defined test also provides the ability to do more tests using a single testing device.

“You’re seeing more and more pieces of test equipment that can test multiple standards,” said White. “You’re starting to see trends where the cost of test equipment has gone down. Or in some cases, the cost of test equipment may not have gone down. But the pressures around being able to utilize that test equipment more, and also having much faster test times than you had in the past, tare all part of the buying decisions that consumers are making, both in semiconductor and on into end-device production test.”

NI isn’t alone in seeing this shift. The market for software-defined technology is picking up steam on a number of fronts as new end markets begin coming to grips with a significant increase in data generated by a proliferation of sensors. That data needs to be processed in multiple places, and it has to be moved around quickly both wirelessly and through copper and optical cabling.

This helps explain why there is so much attention focused on the Peripheral Component Interconnect Express (PCIe) bus standard and its related serial interface, which are key enablers for software-defined interfaces and test. The AXIe Consortium last year unveiled the Optical Data Interface specification, an initiative embraced by Intel, Keysight, and Xilinx, among others. The ODI spec supports high-speed instrumentation and embedded systems for work in 5G, advanced communications research, and mil/aero applications.

“The measurements really get defined on the computer, and there are fast data pipes that can exist between the instrument and the PC so that you aren’t tied to just one piece of software,” said Matthew Maxwell, Tektronix’s product manager for real-time spectrum analyzers. “For example, we have our USB spectrum analyzers that run the software we took out of our benchtop big box and now have it as standalone PC software. And because there’s a fast USB 3.0 connection that provides data rates of up to 280 megabits a second, it saves a step on the instrumentation side. We don’t need to design the same kind of digital interface that we used to, which basically meant build a laptop type of PC into every instrument that’s automatically obsolete by the time we come out with it. Now we plug in any laptop that has USB 3.0 into a USB instrument and you’re already up to date. That’s a lower-cost approach. There’s a proliferation of USB instruments out there. On the high end, we’ve done something similar.”

Moving large amounts of data quickly is particularly important for military applications, as well. Antenna systems, Bluetooth connectivity, and the Internet of Things also benefit from these software-enabled instruments.

By: DocMemory
Copyright © 2023 CST, Inc. All Rights Reserved

CST Inc. Memory Tester DDR Tester
Copyright © 1994 - 2023 CST, Inc. All Rights Reserved