Home
News
Products
Corporate
Contact
 
Saturday, September 7, 2024

News
Industry News
Publications
CST News
Help/Support
Software
Tester FAQs
Industry News

Microchip MPU Designed for Autonomous Space Computing


Tuesday, July 16, 2024

The world has changed dramatically in the two decades since the debut of what was then considered a trail-blazing space-grade processor used in NASA missions such as the comet-chasing Deep Impact spacecraft and Mars Curiosity rover vehicle.

The world has changed dramatically in the two decades since the debut of what was then considered a trail-blazing space-grade processor used in NASA missions such as the comet-chasing Deep Impact spacecraft and Mars Curiosity rover vehicle.

A report released by the World Economic Forum estimated that the space hardware and the space service industry is set to grow at a compound annual growth rate (CAGR) of 7% from 2023’s $330 billion dollars to $755 billion dollars by 2035. To support a diverse and growing global space market with a rapidly expanding variety of computational needs, including more autonomous applications, Microchip Technology Inc. has launched the first devices in its planned family of PIC64 High-Performance Spaceflight Computing (PIC64-HPSC) microprocessors (MPUs).

Unlike previous spaceflight computing solutions, the radiation- and fault-tolerant PIC64-HPSC MPUs, which Microchip is delivering to NASA and the broader defense and commercial aerospace industry, integrate widely adopted RISC-V® CPUs augmented with vector-processing instruction extensions to support Artificial Intelligence/Machine Learning (AI/ML) applications. The MPUs also feature a suite of features and industry-standard interfaces and protocols not previously available for space applications. A growing ecosystem of partners is being assembled to expedite the development of integrated system-level solutions. This ecosystem features Single-Board Computers (SBCs), space-grade companion components and a network of open-source and commercial software partners.

“This is a giant leap forward in the advancement and modernization of the space avionics and payload technology ecosystem. The PIC64-HPSC family is a testament to Microchip’s longstanding spaceflight heritage and our commitment to providing solutions built on industry-leading technologies and a total systems approach to accelerate our customers’ development process,” said Maher Fahmi, corporate vice president, Microchip Technology’s communications business unit.

The Radiation-Hardened (RH) PIC64-HPSC RH is designed to give autonomous missions the local processing power to execute real-time tasks such as rover hazard avoidance on the Moon’s surface, while also enabling long-duration, deep-space missions like Mars expeditions requiring extremely low-power consumption while withstanding harsh space conditions. For the commercial space sector, the Radiation-Tolerant (RT) PIC64-HPSC RT is designed to meet the needs of Low Earth Orbit (LEO) constellations where system providers must prioritize low cost over longevity, while also providing the high fault tolerance that is vital for round-the-clock service reliability and the cybersecurity of space assets.

The PIC64-HPSC MPUs offer a variety of capabilities, many of which were not previously available for space computing applications, including space-grade 64-bit MPU architecture—includes eight SiFive RISC-V X280 64-bit CPU cores supporting virtualization and real-time operation, with vector extensions that can deliver up to 2 TOPS (int8) or 1 TFLOPS (bfloat16) of vector performance for implementing AI/ML processing for autonomous missions; includes a 240Gbps Time Sensitive Networking (TSN) Ethernet switch for 10GbE connectivity; supports scalable and extensible PCIe Gen 3 and Compute Express Link (CXL) 2.0 with x4 or x8 configurations and includes RMAP-compatible SpaceWire ports with internal routers; includes Remote Direct Memory Access (RDMA) over Converged Ethernet (RoCEv2) hardware accelerators to facilitate low-latency data transfers from remote sensors without burdening compute performance, which maximizes compute capabilities by bringing data close to the CPU; and implements defense-in-depth security with support for post-quantum cryptography and anti-tamper features.

“Microchip’s PIC64-HPSC family replaces the purpose-built, obsolescence-prone solutions of the past with a high-performance and scalable space-grade compute processor platform supported by the company’s vibrant and growing development ecosystem. This innovative and forward-looking architecture integrates the best of the past 40-plus years of processing technology advances. By uniquely addressing the three critical areas of reliability, safety and security, we fully expect the PIC64-HPSC to see widespread adoption in air, land and sea applications,” said Kevin Kinsella, Architect – System Security Engineering with Northrop Grumman.

In 2022, NASA selected Microchip to develop a High-Performance Spaceflight Computing processor that could provide at least 100 times the computational capacity of current spaceflight computers. This key capability would advance future space missions, from planetary exploration to lunar and Mars surface missions. The PIC64-HPSC is the result of that partnership. Representatives from NASA, Microchip and industry leaders like Northrop Grumman are sharing insights about the HPSC technology and ecosystem at the IEEE Space Compute Conference 2024, which is being held this week, from July 15–19, in Mountain View, California:

Microchip’s inaugural PIC64-HPSC MPUs were launched in tandem with the company’s PIC64GX MPUs that enable intelligent edge designs in the industrial, automotive, communications, IoT, aerospace and defense segments. With the launch of its PIC64GX MPU family, Microchip has become the only embedded solutions provider actively developing a full spectrum of 8-, 16-, 32- and 64-bit solutions.

Microchip has a broad portfolio of solutions designed for the aerospace and defense market including processing with Radiation-Tolerant (RT) and Radiation-Hardened (RH) MCUs, FPGAs and Ethernet PHYs, power devices, RF products, timing, as well as discrete components from bare die to system modules. Additionally, Microchip offers a wide range of components on the Quality Products List (QPL) to better serve its customers.

Comprehensive Ecosystem

Microchip’s new PIC64-HPSC MPUs will be supported by a comprehensive space-grade ecosystem and innovation engine that encompasses flight-capable, industry-standard SBCs, a community of open-source and commercial software partners and the implementation of common commercial standards to help streamline and accelerate the development of system-level integrated solutions. Early members in the ecosystem include: SiFive, Moog, IDEAS-TEK, Ibeos, 3D PLUS, Micropac, Wind River, Linux Foundation, RTEMS, Xen, Lauterbach, Entrust and many more.

Microchip will also offer a comprehensive PIC64-HPSC evaluation platform that incorporates the MPU, an expansion card and a variety of peripheral daughter cards.

By: DocMemory
Copyright © 2023 CST, Inc. All Rights Reserved

CST Inc. Memory Tester DDR Tester
Copyright © 1994 - 2023 CST, Inc. All Rights Reserved